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Abstract 
A "modem design of experiments" (MDOE) approach 
to balance calibration at NASA Langley Research 
Center focuses on the application of formal 
experimental design techniques to address weaknesses 
in the current calibration methodologies. The Single- 
Vector Balance Calibration System (SVS) has been 
developed as an innovative mechanical load application 
system specifically designed for the efficient and 
accurate execution of a formal experimental design. 
This paper emphasizes practical applications of 
response surface methodology with the analyses of 
experimental data. Calibration experimental design 
concepts including the estimation of the required data 
volume and an evaluation of the model prediction 
capability are presented. Randomization, replication, 
and blocking are proposed as means of tactical defense 
against systematic errors present in all calibration 
systems. Response surface methods are implemented in 
obtaining an adequate model with the minimum number 
of terms and partitioning of the unexplained variance. 
A systematic approach to augmenting a second order 
model with higher order terms is discussed. Applying 
formal experimental design techniques to force balance 
calibration provides a suite of sophisticated and elegant 
tools that advance balance calibration technology. 

Backmound 
Direct force and moment measurement of aerodynamic 
loads is fundamental to wind tunnel testing at NASA 
Langley Research Center (LaRC). Force balances are 
the state-of-the-art instrument that provides these 
measurements in six degrees of freedom. Electrically 
measured strain, as a function of load, forms the basic 
concept of force balance measurements that has been 
generally used since the 1940s. Ideally, each balance 
signal would respond only to its respective component 
of load, and it would have no response to other 
components of load. This is not entirely possible even 
though balance designs are optimized to minimize these 
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undesirable interaction effects. Ultimately, a 
calibration experiment is performed to obtain the 
necessary data to generate a mathematical model. 
Over the past 60 years, there have been improvements 
in many areas of force balance technology, but 
relatively little has changed in the area of force balance 
calibration methodology. Calibration is the most 
critical phase in the production of a high quality force 
transducer. The goal of a calibration experiment is to 
derive a mathematical model that is used to estimate 
aerodynamic loading incurred during wind tunnel 
testing. The accuracy of this model is also determined 
during the calibration experiment. The present 
experimental approach is based on a one-factor-at-a- 
time (OFAT) methodology, where each independent 
variable is incremented individually throughout its full- 
scale range, while all other variables are held at a 
constant magnitude. 

Calibration models are based on a polynomial equation 
where the balance response is a function of the applied 
load. This model can be thought of as a Taylor's series 
approximation to a general function. For example, with 
k = 2 design variables, a general polynomial can be 
expressed by : 

f (x, PI= Po (y - intercept) 

+PA + P,x2 (linear terms) 

+Pl2XIX2 (interaction terms) 

+ P I I X I Z  +Pt2x22 (pure quadratic terms) 

+Pl,lx,3 +P2t2x23 +P112x12x2 +PIz2x,x,2 (cubic terms) 

+Pllllx,4 +-.. (quartic terms) 

+ etc., 

where k is the number of independent variables, xi is the 
i rh independent variable, and P represents the 
coefficients in the mathematical model. Typically, the 
higher the degree of the approximating polynomial, the 
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more closely the Taylor series expansion will 
approximate the true mathematical function.' In the 
current LaRC calibration model, a degree of two is 
used, and therefore a second-order model is generated. 
For balance calibration there are six design variables, 
and the second order model for each response contains 
a total of 28 terms. 
In order to set the independent variables of applied 
load, a high-precision mechanical system is required. 
Manual dead-weight balance calibration stands have 
been in use at LaRC since the 1940's. These simple 
methodologies produce high confidence results, but the 
process is mechanically complex and labor-intensive, 
requiring three to four weeks to complete.2 
Over the past decade, automated balance calibration 
systems have been developed. In general, these 
systems were designed to automate the manual 
calibration process. Unfortunately, the automation of 
this tedious manual process results in an even more 
complex mechanical system that is quite expensive. 
Also, compared to manual systems, the quality of load 
application is deteri~rated.~ 

There are a number of weaknesses in the current 
calibration methodology and available load application 
systems. In regard to 5 methodology, the OFAT 
approach has been widely accepted because of its 
inherent simplicity and intuitive appeal to the balance 
engineer. LaRC has been conducting research in a 
"modem design of experiments" (MDOE) approach to 
force balance calibration. Formal experimental design 
techniques provide an integrated view to the calibration 
process. This scientific approach applies to all three 
major aspects of an experiment; the design of the 
experiment, the execution of the experiment, and the 
statistical analyses of the data. 

Load application systems, both manual and automated, 
also have weaknesses. The manual systems, although 
generally considered accurate, are slow and tedious and 
provide many opportunities for systematic error. 
Automated systems that greatly reduce calibration time 
include additional sources of systematic error due to 
their mechanical complexity, and their expense makes 
them prohibitive for wide spread use. Both of these 
mechanical systems were designed around the OFAT 
calibration requirement to set independent variables one 
at a time and to obtain maximum efficiency of data 
collection. 
In order to apply formal experimental techniques, a new 
mechanical system was required. An inno.vative 
approach to balance calibration has been developed at 
LaRC that integrates a unique load application system 
with formal experimental design methodology. The 

Single-Vector Balance Calibration System (SVS) 
enables the complete calibration of a six component 
force balance with a single force ~ e c t o r . ~  A primary 
advantage to this load application system is that it 
improves on the "trusted" aspects of current manual 
calibration systems. The SVS enables the efficient 
execution of a formal experimental design, is relatively 
inexpensive to manufacture, requires minimal time to 
operate, and provides a high level of accuracy in the 
setting of the independent variables. A photograph of 
the SVS is provided in Figure 1. 

Figure 1. Single-Vector System 

The SVS allows for single vector calibration, meaning 
that single, calibrated dead-weight loads are applied in 
the gravitational direction generating six component 
combinations of load relative to the coordinate system 
of the balance. By utilizing this single force vector, 
load application inaccuracies caused by the 
conventional requirement to generate multiple force 
vectors are fundamentally reduced. The angular 
manipulation of the balance, combined with the load 
point positioning system, allows the uni-directional 
load to be used to produce three force vectors (normal 
force, axial force, side force) and three moment vectors 
(pitching moment, rolling moment, yawing moment), 
with respect to the balance moment center. As a result, 
the use of a single calibration load reduces the set-up 
time for the randomized multi-axis load combinations 
required to execute a formal experimental design. 
Further details on the Single-Vector System are 
available in Reference 4. This paper is focused on the 
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analytical techniques that this new mechanical 
calibration system has enabled. 

Introduction 
This paper presents the application of formal 
experimental design principles to the balance 
calibration experiment. First, the factors involved in 
determining an adequate calibration design and its 
evaluation are presented. The calibration design is 
commonly referred to as the load schedule, but the term 
design will be subsequently used because it implies a 
process with clear objectives and criteria, not simply a 
list of load combinations. Balance engineers have 
posed questions about how to evaluate a calibration 
design. For example, how many data points are 
required in the calibration design? How can we 
evaluate the quality of a design before we get 
experimental data? Is there any way to measure or 
defend against systematic errors that are present in all 
calibration systems? These questions are addressed in 
the first section of this paper on the experimental 
design. Objective techniques are presented that enable 
the balance engineer to develop better, more efficient, 
experimental designs. 

In the second section of this paper, the application of 
response surface methods (RSM) to balance calibration 
modeling is presented. Questions have been posed 
about how the analysis should be performed, and the 
interpretation of the results. For example, isn’t the best 
model the one with the most terms? How do we know 
when a model coefficient is due to random noise 
instead of a real effect? How do we determine whether 
the model is adequate, and when higher-order terms are 
required? These questions are addressed in the RSM 
section of this paper. A formal experimental design 
enables the application of powerful analysis techniques 
that provide new insights into calibration results. These 
insights empower the balance design engineer to 
objectively analyze and report the results. 

ExDerimental Desbn 

The OFAT calibration design, that specifies the 
independent variables to be applied, was created to 
enable the determination of the mathematical 
coefficients using graphical techniques. Historically 
this was required due to the computational resources 
available in the 1950’s, when this design was 
developed.’ Since this time, the design has remained 
nearly unchanged. In the LaRC OFAT design, there are 
a total of 81 load sequences performed sequentially in 
time. Each load sequence consists of a tare point, four 
increments, three decrements, and return tare point 

providing a total of nine data points per sequence; 729 
points in all. 
Are 729 data points enough, not enough, or too many? 
How do we determine how many data points are 
required in a calibration design? The minimum number 
of points in an experimental design is bounded by the 
number of parameters in the model. For a dfh order 
polynomial model in k variables the number of 
parameters, p, can be determined according to the 
following equation, 

d! k! 
(d + k)! 

p = -  (1) 

For a second order model, there are a total of 28 
parameters, or terms, in the model. This includes the 
intercept, six linear, six pure quadratic, and 15 two-way 
interactions. This means that there must be ‘at least 28 
distinct combinations of the independent variables in 
the calibration design. A design with 28 points is 
referred to as saturated, because there would be no 
additional degrees of freedom to assess the quality of fit 
of the model. In other words, all 28 points would lie on 
the calculated response surface. It is generally accepted 
that this is unsatisfactory in determining the model, but 
how many additional points are required? An objective 
approach to determine the total number of points 
required, referred to as the data volume, is presented in 
the next section. 
The volume of data required in an experimental design 
depends on four primary parameters: 1) the 
repeatability of the measurement environment, 2) the 
precision requirement, 3) the inference error risk, and 4) 
the number of parameters in the model, as discussed 
above. The repeatability of the measurement 
environment is a function of how repeatable the 
independent variables can be set, and how the balance 
responses can be measured. It is a measure of the 
variance experienced in the calibration experiment and 
is determined by performing genuine replicates during 
the experiment. A genuine replicate is different from 
simply holding the independent variables at a constant 
setting and recording multiple data points. It requires 
changing the independent variables between identical 
set-point conditions. Prior to the execution of the 
design, this variance is based on historical data for a 
particular calibration system. 
The precision requirement is commonly thought of as 
the required balance accuracy, or the desired quality of 
the prediction from the math model. When the 
calibration is completed, a calibration equation that 
predicts the balance response for a given set of applied 
loads is provided, this is the mathematical model. The 
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Component 

prediction of the model will not be the exact input loads 
unless the calibration is perfect. The precision specification would be better than one chance in four). 
requirement indicates how close is "close enough." For 

force Of loo pounds is 

acceptable prediction from the calibration model? In 

balance, we want the balance to read "100 pounds 2 X". 
What is "X"? This precision requirement should be tied 
directly to the wind tunnel test objectives. 

the probability of at least one of the six being out of 

Combining these parameters with the form of the 
mathematical model and the constraints involved in the 

information to define the required data volume. The 

experimentIl to meet the In other words to 
quantify the volume of data required to meet the 
precision requirements specified, with the level of 

if a true 
how much different from '00 pounds is an execution of the design, provide the necessary 

Other words- when a loo pounds is to the purpose of determining the data volume is to "scale the 

Design Load Output 

inch-pounds) per volt) 
(pounds or (microvolts 

There are two components of the inference error risk.6 
First, there is the risk that the calibration model will 
predict a load that differs from the actual applied load 
by more than the specified precision requirement. The 
maximum acceptable probability of committing this 
type of error is generally represented by a. There is 
also a risk of failing to detect a true incremental change 
in load that is large enough to be important. The 
smallest such change in load defines the resolution 
requirement for the experiment. The maximum 
acceptable probability of committing this type of error, 
failing to detect an important change in load, is 
commonly denoted by p. 
Typically a 95% confidence interval (0.05% risk) is 
reported from a balance calibration, which is an a type 
inference error risk for each component. This says that 
we will accept a 5% chance (1 in 20) that a freshly 
calibrated balance will predict a response that differs 
from the measured response in each component by 
more than the amount specified as the precision 
requirement. For example, if a 100 pound normal force 
is applied, and we have specified that we require the 
balance model to predict a response of 100 k 0.08 
pounds 95% of the time, so that only 5% of the time the 
balance will give a value either greater than 100.08 or 
less than 99.92 pounds. 
A more appropriate specification is that there would be 
no more than a 5% chance of any of the six balance 
components be in error by more than the amount 
specified by the precision requirement. The probability 
of any one component being within the specification is 
computed such that the probability to the 6th power is 
no less than 0.95. Therefore, that probability follows. 

P = (0.95)(') = 0.9915 (2)  

If there is a 99.15% probability that any one component 
is within specification, there is a 95% probability that 
all six components are within specification. This is 
what is intended when we specify a 95% confidence in 
the calibration result. (If we accepted 95% probability 
of being within specification on any one component, 

Normal Force 

confidence required, in the presence of the amount of 
response variance that is anticipated. 

150 1,645 

One equation that can be used to estimate the required 
volume of data, N, is,' 

Axial Force 

Pitching Moment 

Rolling Moment 

Yawing Moment 

Side Force 

(3) 

30 1,956 

200 1,433 

30 1,494 

100 1,399 

75 1,421 

In order to determine the required data volume, the 
values of the repeatability of the measurement 
environment (expressed as the standard deviation), the 
precision requirement, and the inference error risks 
were estimated. The repeatability of the measurement 
environment was estimated at 0.4 microvolts per volt, 
based on historical calibrations. This number was 
converted into engineering units of the UT-39A and is 
supplied the first row of Table 11. 
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U 

(units for Q and 6 are in pounds or inch-pounds) 
Table II. Design values used to estimate data volume. 

For this example the precision requirement was selected 
to be 0.10% of full-scale. This percentage was 
converted into engineering units for both components 
and is supplied in the second row of Table 11. The 
acceptable inference error risk for cx and /3 was 
specified at 0.0085 and 0.0170 respectively. 
The z value for both inference error risks is 2.632. 
(They are the same because z, is associated with a 
"two-sided" distribution, zB is associated with a "one- 
sided" distribution, and the inference risks have a 2:l 
ratio.) This can be found in standard statistical 
reference tables. In this case, the z-statistic was used 
because the repeatability estimate came from historical 
experience involving a statistically significant volume 
of data. 
Substituting the above values into Equation 3 provides 
a relationship between the number of parameters in the 
model and the number of data points required. This 
relationship is simplified in Equation 4, where the U 

value for the components is supplied in Table III. 

N = m a )  (4) 

Normal Axial Pitch 

1.6 1.2 2.2 

2nd order model 

31d order model 138 181 

Table IV. Required data volume based on the number 
of model parameters. 

Therefore, to estimate a second order model for the 
normal force component a design with at least 46 data 

points is required to achieve the specified precision in 
the presence of the estimated repeatability of the 
measurement environment. For a complete third order 
model, a minimum of 138 data points is required. 
These estimates are conservative because in actual 
practice the number of parameters in the model that are 
statistically significant is considerably less. The 
concepts involved with determining statistically 
significant terms and model reduction techniques are 
discussed later in this paper. 

It is important to note that the volume of data required 
is independent of the type of terms in the mathematical 
model, it is only dependent on the number of terms in 
the model. This means that with 46 data points, in the 
example above, a total of 28 terms can be estimated. 
These 28 terms may include a combination of linear, 
second order, third order, and higher order. The setting 
of the independent variables within the design 
determines the terms that can be estimated. 
The estimation of required data volume for a calibration 
experiment is usually not performed. As a result, it has 
been generally accepted that the more data that can be 
obtained, limited only be available resources, the better 
the calibration result. Resources at research 
laboratories are never unlimited, and therefore the 
estimation of the required data volume provides a 
means to leverage the available resources. The typical 
OFAT calibration design that has been used at LaRC 
consists of 729 data points for the estimation of a 
second order mathematical model. It is obvious that 
this number of points is an order of magnitude greater 
than what is required. 

An MDOE approach deviates from the current trend of 
collecting massive data volume in an OFAT method, by 
specifying ample data to meet requirements quantified 
in the design without prescribing volumes of data far in 
excess of this minimum. The goal is to efficiently 
achieve the primary objective of the calibration 
experiment; namely the determination of an accurate 
mathematical model that meets the specified objectives. 

In the application of the force balances to wind tunnel 
testing, the prediction quality (precision requirement) 
and prediction risk (inference error risk) are typically 
not provided by the aerodynamic researcher. Their 
impact on the ability to answer the research questions 
under investigation in the wind tunnel test should drive 
these objectives, and thereby the data volume. This 
link between calibration required accuracy and the 
ability to adequately answer the aerodynamic research 
questions is vital to apply appropriate resources to the 
balance calibration experiment. 
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The distribution of the standard error of the predicted 
values is a second method. The purpose of performing 
a balance calibration and developing a model is to be . o . - able to predict a future response of a specific setting of 
the independent variables. The prediction standard 
error is a function of the model, the design, and the 
location of a point of interest within the design space. 
The reader is referred to Reference 8 for the 

- mathematical derivation of this distribution. It is the 
goal of this section to provide a qualitative 

- 

- 

What makes one calibration design better than another? 
How do we objectively evaluate the prediction 
capability of a calibration design? Prior to the 
execution of the design, the quality can be evaluated by 
a number of techniques. Two of these techniques will 
now be presented. First, the design space, the region 
over which the calibration is performed, should be 
compared to the region of operability. A force balance 
has a six dimensional inference space, which can be 
thought of as a hyper-cube and contains all possible 
combinations of the independent variables. The region 
of operability is the region in which the balance will be 
used -in the wind tunnel. Since the model is an 
approximation of the true functional relationship of the 
balance response to applied load, the design space 
should be chosen to be as close as possible to the region 
of operability, because we want to perform that 
approximation over as small of a range as possible. 
This implies that a calibration should be tailored to the 
requirements of a specific wind tunnel entry. Currently, 
due to productivity constraints, this is not performed 
and the balance is calibrated over its entire load range. 
Also, we want the region of operability to lie within the 
perimeter of the design space to ensure that we do not 
use our model to extrapolate, which can produce 
significantly higher errors in the prediction. 
A graphical comparison of the inference space is useful 
in comparing different calibration designs. As an 
example, using the UT-39A balance, the setting of the 
independent variables for the normal force and axial 
force components are provided in Figure 2. 

401 a I 

0 .-I 3010 0 0 O O A O O  0 0 

0 

30 t i 

0 
-30 
-20 t 
-r" -150 -100 -50 0 50 100 150 

Normal (Ibs) 

(b) MDOE @-point design 
Figure 2. concluded. 

A comparison of these figures clearly reveals 
differences in the design space. In particular, the 
OFAT design does not include any settings of negative 
axial force. It has been generally considered that in 
wind tunnel testing only positive axial force is seen by 
the force balance, unless a powered model is used for 
propulsion type research. In fact, when testing the 
model at positive pitch angles, a vector component of 
positive lift acts in the negative axial force direction. 
Extrapolation is required to predict responses in the 
negative axial force region of the design space, which is 
clearly undesirable. 

The symmetry of the MDOE design can be seen in 
Figure 2(b). Recall, that the inference space of the 
force balance is six dimensional, and the figure is a two 
dimensional plot. The combinations of the six 
independent variables are also symmetrical in six 
dimensional space. 
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calibration designs are evaluated by performing 
successive calibrations of a particular test balance with 
various experimental designs. While this is quite 
useful, the performance of the particular test balance 
and the quality of the calibration system influence the 
evaluation, which is unfortunate. In other words, the 
results of the same series of tests could produce 
different results using another test balance and 
calibration system. Our goal in evaluating the design is 
to determine if the prediction capability is adequate 
over the region of operability. 
The value of the standard error of prediction, at a point 
in the design space, is computed according to the 
following equation.' 

Vur[ j (x ) ]  = X(m)'(X'X)-'X(m)02 ( 5 )  

where, Vur[;(x)] is the variance in the predicted value, 
x'"' is a vector which defines the location of the point of 
interest, m reflects the form of the model, (X'X) is the 
first moment of the design matrix, and o2 is the 
unexplained variance. Prior to the execution of the 
design the value of o2 is set equal to one, therefore we 
can perform an evaluation of the distribution of unit 
standard error. The point of interest is defined by the 
vector 2"'. For a second order model, with six 
independent variables, x'"' would contain 28 terms 
computed at the point of interest in the following form, 

where x,  would correspond to normal force, x,x, would 
correspond to normal force squared, and x,x2 would 
correspond to normal force times axial force. 
For a given location in the inference space, and a given 
measurement environment, the quality of the response 
prediction depends completely on the design matrix, 
which is a function of the settings of the independent 
variables and the form of the model. 

It is desirable that the calibration design possesses a 
reasonably stable distribution of the prediction variance 
throughout the design space. Since, the actual location 
of prediction within the inference space is not well 
defined prior to the wind tunnel test; a stable 
distribution provides insurance that the quality of the 
prediction is nearly the same throughout the region of 
interest. 
As an example, this evaluation technique is applied to 
the UT-39A balance. Two experimental designs will be 
evaluated and compared, the OFAT 729-point and an 
MDOE 64-point. Shown in Figure 3 are plots of the 
distribution of unit standard error for the variables of 
normal and axial. This is a graph of the square root of 
prediction variance (given in Equation 5) letting the .dm' 

range over the entire design space. It represents the 
model's error distribution in multiples of the standard 
error (square root of the unexplained variance) in the 
prediction. 

L 

65 

-30.00 7 
-z 

R NFL 

(a) OFAT 729-point design 
Figure 3. Distribution of unit standard error. 

I 

-30.00 I ,  / -3, '.. I ,  

8 AFL 

M.ooYM.00 A: NFL 

(b) MDOE &-point design 
Figure 3. concluded. 

In Figure 3(a), the results of the extrapolation into the 
negative axial force region of the design space are 
apparent. As expected, this extrapolation would 
provide unacceptably high prediction uncertainty. 
In Figure 3(b), the stability of the distribution of the 
unit standard error can be seen by the flat region 
throughout most of the design space. The near radial 
symmetry in the contours of constant error depicted in 
the lower plane are evidence of a desirable property 
known as rotatability. A design that is rotatable 
provides the same value of the prediction variance for 
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all points that are equal distance from the center of the 
design. The slight error increase in the comers of this 
design are directly related to the setting of the 
independent variables depicted if Figure 2(b). Once 
again this increase in uncertainty is due to 
extrapolation. In the MDOE design the comers of the 
design space, which represent all six independent 
variables set at their maximum values simultaneously, 
have been considered as unlikely combinations to occur 
in actual wind tunnel testing, and therefore are not set 
in the experimental design. 

DesiPn Execution 

How .do we measure or defend against systematic errors 
that are present in all calibration systems? The three 
fundamental quality-assurance principles employed 
during the execution of a formal experiment design are 
randomization, blocking, and replication. 
Randomization of point ordering ensures that a given 
setting of the independent variables is just as likely to 
be applied early in the calibration as late. If sample 
means are stable, the point ordering does not matter. 
However, if some systematic variation (e.g. 
instrumentation drift, temperature effects, operator 
fatigue, etc.) causes earlier measurements to be biased 
low and later measurements to be biased high then 
randomization converts such unseen systematic errors 
to an additional component of simple random error. 
Random error is easy to detect and also easy to correct 
by replication. Randomization of point ordering also 
increases the statistical independence of each data point 
in the design. 
Statistical independence is often assumed to exist in the 
current methods of balance calibration, but systematic 
variation can cause measurement errors to be 
correlated, and therefore not independent of each other, 
as required for standard precision interval computations 
to be valid. Even relatively mild correlation can corrupt 
variance estimates substantially, introducing significant 
errors into estimates of "95% confidence intervals" and 
other such quality metrics. 
Blocking entails organizing the design into relatively 
short blocks of time within which the randomization of 
point ordering ensures stable sample means and 
statistical independence of measurements. While 
randomization defends against systematic within-block 
variation, substantial between-block systematic 
variation is also possible. For example, calibrations 
spanning days or weeks might involve different 
operators, who each may use slightly different 
techniques, or possess somewhat different skill levels. 
By blocking the design, it is possible in the analysis to 

remove these between-block components of what 
would otherwise be unexplained variance. 

Averaging replicates causes random errors to cancel. 
This includes otherwise undetectable systematic 
variation that is converted to random error by 
randomizing the execution order of the experimental 
design. Replication also facilitates unbiased estimates 
of what is called "pure-error" - the error component due 
to ordinary chance variations in the data. These pure- 
error estimates are critical to evaluating the quality of 
the calibration model by permitting the fit of the model 
to the data to be assessed objectively. 
This section has presented powerful tools that can be 
used to design and evaluate an experimental design. 
These tools are especially useful in determining the 
resources required to execute the design by estimating 
the required data volume that is dictated by the 
objectives of the calibration. Historically, little focus 
has been applied to the construction of the experimental 
design, even though its impact on the model has been 
suspected. With these techniques, designs can be 
evaluated before experimental data is obtained. Also, 
objective comparisons can be made between various 
designs. The principles of how to execute the 
experimental design have been presented as a tactical 
measure to defend against systematic errors in the 
calibration process. The way in which the experimental 
design is constructed and executed enables the 
application of sophisticated analyses of the data. These 
analyses are discussed in the next section. 

ResDonse Surface Methods 

The application of response surface methodology to the 
analyses of the experimental data is quite different from 
current balance data processing. It involves statistical 
tools used in tandem with the experience of the balance 
engineer to objectively determine the model 
coefficients. The number of terms in the model is 
minimized by eliminating those with coefficients that 
are too small to resolve with a sufficiently high level of 
confidence. Also, the total unexplained variance is 
partitioned into the pure-error and lack-of-fit 
components. This analysis of unexplained variance 
provides a method to make objective judgements about 
the adequacy of the model and the potential for 
improving the model with higher order terms. 
Model Selection 

During the modeling process, the model with the fewest 
parameters is desired. A "good" model is the smallest 
one that has insignificant lack-of-fit and meets the 
precision requirement. An analysis of variance 
(ANOVA) is performed to achieve these objectives. 
One aspect of the ANOVA is a method to determine the 

290 



9.3 

Source DF Mean Square F-value Prob > F 
Block I 1' 3.384E+02! i 
Model ' 61 3.665E+05/ 160,5031 <0.0001 
N ~ 1 ;  1.630E+03! 7141 <0.0001 
A al 1; 2.158E+06/ 945,011: e 0.0001 
P ! 11 4.692E+03/ 2,0551 < 0.0001 
R i 1 ,  1.209E+Oli 5.31 0.0252 

NP i 1 :  1.052E+Oli 4.61 0.0362 
Residual ~ 561 2.284E+001 
LackofFit 471 2.697~+00i 21.93 0.0001 
Pure Error I 91 1.230E-01\ 

Y 1 I 9.539E+01~ 41.8' < 0.0001 

, 

99 - 

Table V. Second order reduced model. 

For example, probability values of less than 0.05 
suggest less than a 5% probability of a chance 
occurrence due to noise resulted in this regression 
coefficient. If this probability is less than a threshold 
value then the coefficient is considered significant and 
is retained in the model. Note the large F-value and 
associated low probability of the A term on the axial 
force response. This is expected since it represents the 
sensitivity constant of that particular component and 
there is a strong correlation between the application of 
axial force and the associated axial force response. 
The first step in the model selection process was to 
perform an ANOVA of a complete second order model. 
Then, a threshold probability of 0.05 was used to 
determine the reduced model. All coefficients that 

, 
,, 

were above this probability were removed. After a 
model term is removed, the regression is performed 
again with the reduced model. This enables the best 
possible fit of the coefficients for the terms remaining 
in the model to be calculated. This procedure is 
performed in an iterative manner until all terms in the 
model are considered significant. The complete second 
order model was reduced from 27 terms to 6 terms 
(excluding the intercept). 

It is the goal of this phase to minimize the number of 
coefficients in the model, which in turn lowers the 
average variance, because each coefficient carries some 
uncertainty. Once the model has been selected, then an 
analysis of the unexplained variance can be performed. 
One diagnostic technique used to determine the quality 
of the model fit is to perform a normal probability plot 
of the residual errors. Figure 4 shows this plot for the 
second order model. The probability scale on the 
vertical axis assumes a normal distribution of 
statistically independent data points. The studentized 
residuals, on the horizontal axis, are multiples of the 
residual standard deviation. It is the number of 
standard deviations that separate the actual and 
predicted response values at a particular point. 

4.24 -221 4 2 3  1.78 3.79 

Studentied Residuals 

Figure 4. Residuals from second order model. 
A pattern in the residuals can indicate a relationship 
between the balance signals and the independent 
variables that is not included in the model. In this case, 
based on structural knowledge of the balance design, it 
was considered that higher order effects involving 
normal force and pitching moment were likely. Higher 
order terms are usually attributed to balance deflection 
under applied load. In classical solid mechanics 
equations, these deflection equations are approximated 
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as cubic, and therefore it is natural that the signals 
would exhibit cubic behavior. Therefore, five third 
order terms were added to the model. An additional 
three second order terms, which were insignificant 
relative to the residual of the second order model, were 
also included. The results are shown in Table VI and 
the corresponding normal probability plot of the 
residuals is provided in Figure 5. The normal 
probability plot of the reduced third order model has a 
better appearance of normality. To further analyze the 
model, an analysis of the unexplained variance was 
then performed. 

ource DF Mean Square F-value Prob > F 
lock 1 3.384E+02i 

Table VI. Third order reduced model. 

Normal Plot of Residuals 
/' 

95 gsj 

1 
I I I 

. 1 s  .0.71 0.55 1 .E1 3.06 

Studentized Residuals 

Figure 5. Residuals from third order model. 

4nalvsis of Unexdained Variance 
An analysis of the unexplained variance is performed in 
order to partition the residual error. Typically, in the 
field of balance calibration, the accuracy is based on the 
standard deviation of the residual errors obtained by 
computing the difference between the actual values and 
the model predicted values. This is expressed as two 
times the standard deviation providing a 95% 
confidence interval. The assumption of statistical 
independence of the data points from an OFAT 
calibration is not valid. Even relatively mild correlation 
can corrupt variance estimates substantially, 
introducing significant errors into estimates of 95% 
confidence intervals. 
More importantly, the total residual error includes two 
distinct components, lack-of-fit and pure-error. The 
lack-of-fit relates to the ability of the math model to 
capture the response of the balance electrical signals as 
a function of the independent variables. The pure-error 
is a function of the repeatability of the measurement 
environment. This includes factors such as the 
mechanical calibration system, the data acquisition 
system, the balance instrumentation, the quality of the 
mechanical interfaces, and the thermal stability of the 
calibration laboratory. RSM provides a technique to 
separate the lack-of-fit and pure-error components of 
the unexplained variance. 
First, the pure-error component is computed from the 
genuine replicates that are performed throughout the 
calibration experiment. In the case of the MDOE 64- 
point design, there were a total of eleven replicates, in 
two blocks. Subtracting the mean value of each block 
from these replicates provides nine degrees of freedom 
(DF) to estimate the pure-error. The sum of the squared 
(SS) deviations from the mean of each block is 
computed. The mean square error (MSE), variance, can 
be computed based on Equation 7. 

- ''pure error 
M ' E p u r c  error - 

D F p u r c  error 

(7) 

Once the pure-error is known, its contribution to the 
total residual can be determined. This computation 
involves subtracting the SS of the pure-error from the 
S S  of the total residual as shown in Equation 8. 

The MSE of all three quantities (total residual, lack-of- 
fit, and pure-error) can then be computed using the 
associated degrees of freedom (DF) and the S S  
according to Equation 7. The ratio of the MSE of the 
lack-of-fit divided by the MSE of the pure-error forms 
the F-value as shown below. 
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This F-value is compared against a critical value of the 
F-distribution that depends on the degrees of freedom 
for both lack-of-fit and pure-error, and the specified 
significance of the test, 0.05 in our case. This 0.05 
significance level means that if our measured F-statistic 
exceeds the critical F-value, we can reject the null 
hypothesis with 95% confidence. The null hypothesis 
in this case is as follows: Ho: The variance of the lack- 
of-fit is not significant relative to the variance of the 
pure-error. If the F-value is greater than the critical F- 
value then the null hypothesis can be rejected. In this 
case, it can be stated that we have 95% confidence that 
the lack-of-fit is significant. On the other hand, if the 
F-value is smaller then the critical F-value, then we 
would not reject the null hypothesis, concluding that we 
are unable to detect significant lack-of-fit with our 
required 95% level of confidence. This F-test 
procedure provides an objective method for 
determining whether or not the model has significant 
lack-of-fit. Significant lack-of-fit means that the 
calibration response function does not adequately 
represent the data upon which it is based. 
A summary of the results of the above analysis 
performed on balance 2008 is provided in Table VII. 
The table contains the analysis of unexplained variance 
for both the second order and third order models 
presented in the last section. 

units of quantities: maximum response is (microvolts/volt), 

Table VII. Analyses of unexplained variance. 
The data in this table provides insight into the 
mathematical model and the physical calibration 

system. The one-sigma estimates in the table are 
computed by taking the square root of the mean squared 
error. 
The lack-of-fit is considered significant in the second 
order model, and therefore a higher-order model could 
be used to provide a better fit. After including the third 
order model terms, the residual was reduced by 6595, 
and the F-test now supports rejecting the null 
hypothesis. In other words, the model does not exhibit 
significant lack-of-fit at a level of 95% confidence. 
It is important to realize that the lack-of-fit test is 
relative to the pure-error. In the limit, as the pure-error 
goes to zero, the lack-of-fit F-value goes to infinity. 
The decision to use a higher-order model is also linked 
to obtaining the required precision. 

Areas of Future Research 
Future research efforts include the investigation of a D- 
optimal design approach combined with multivariate 
orthogonal functions, the implementation of higher- 
order models, and the expansion of the calibration 
model to include temperature effects. 
Employing a D-optimal approach to the construction of 
the experimental design has the advantage of selecting 
points from candidate combinations of the independent 
variables that are tailored to the physical constraints 
imposed by the mechanical calibration system. A D- 
optimal design minimizes the volume of the joint 
confidence region on the vector of regression 
coefficients? To achieve the orthogonality of the 
regressors, multivariate orthogonal functions can be 
utilized." Combining these two techniques will enable 
the construction of new experimental design that will 
improve the efficiency of the execution of the design. 

RSM techniques provide systematic methods for 
research into better mathematical models. It is common 
practice to include partitioned coefficients in a balance 
math model to improve second order model 
deficiencies. These partitioned coefficients, often 
referred to as split terms, are more likely higher order 
terms. Designs will be executed to investigate 
complete cubic math models. 
It is generally known that balance calibration response 
is a function of temperature. At the present time, all 
LaRC balance calibrations are performed at room 
temperature. Few, if any, operate at room temperature 
in the wind tunnel environment. In some cases, an 
abbreviated OFAT sequence of loads is performed at 
elevated or cryogenic temperature. The temperature 
calibration results are difficult to interpret due to the 
inability to separate the repeatability of the 
measurement environment from the actual ther'mal 
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effects. A calibration design that incorporates balance 
temperature as an independent variable has been 
proposed. 

ConcludinP Remarks 
Certain weaknesses in current balance calibration 
experimental methodology and mechanical systems 
have been presented. The Single-Vector System 
enables an MDOE approach to balance calibration that 
can address these weaknesses. Practical application of 
these techniques has been emphasized with actual 
experimental data. The following specific findings are 
noted: 
1) The data volume of the experiment is functionally 
related to the requirements of the balance performance 
and the precision of the calibration system. Current 
OFAT designs have an order of magnitude higher data 
volume than required. Calibration resources can be 
better utilized if ample data volume is specified, not 
excessive data volume. 
2) An experimental design can be evaluated to 
determine its adequacy to meet the objectives. This 
evaluation, which does not require experimental data, 
enables objective comparisons of various designs. 
3) Randomization of point ordering, replication of 
design points, and blocking can be used as tactical 
measures to defend against systematic errors, present in 
all calibration systems. 
4) A "good" mathematical model minimizes the number 
of terms and eliminates those that can not be 
distinguished from experimental noise with a high level 
of confidence. Genuine replicates enable the 
partitioning of the unexplained variance into lack-of-fit 
and pure-emor components. 
5) Partitioning of the unexplained variance provides an 
objective method to determine when higher order 
models are justified. Normal probability plots provide 
a useful graphical method that aid in determining model 
adequacy. 
These sophisticated and elegant techniques have been 
routinely used in many fields outside of experimental 
aeronautics. Application of these methods to balance 
calibration provides new insight to the calibration 
process, and an increased quality of force and moment 
measurements during wind tunnel testing. 
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